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SUMMARY

"As part of a continuing program of gas
turbine cycle calculations, the Engine Laboratory of
the National Research Council of Cimada has proposed
a simplified method for calculating off-design-point
performance of turbojet and turbofan engines, both
at sea level static and at altitude flight conditions.
This method specifically implies constancy of com-
ponent efficiencies and linearity of corrected mass
flow with corrected engine speed.I During a series of tests on a J-75 two-spool
turbojet engine, experimental data were gathered at
part-throttle conditions, and subsequently with com-
pressor bleed extraction and with propelling nozzle
area change.

In general, the calculation routine yielded
very good predictions of the part-throttle performance
of the datum engine. It was far less successful, how-
ever, in forecasting the effects of compressor bleed
extraction, propelling nozzle area change, and com-

4, binations of these perturbations to the basic cycle.
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GAS TURBINE CYCLE CALCULATIONS:
EXPERIMEN7TAL VERIFICATION OF OFF-DESIGN- POINT PERFORMANCE

PREDICTIONS FOR A TWO-SPOOL TURBOJET WITH VARIOUS AIr. BLEEDS

1.0 INTRODUCTION

The Engine Laboratory is engaged in a continuing program of generating
Ga Turbine Cycle Calculation routines of sufficient flexibility and rigour to have wide
applicability for aircraft performance studies. References 1, 2, 3, and 5 are members
of ýthe series of reports describing these cycle analysis programs. In particular,
Reference 1 describes the performance prediction program for turbojet and turbofan
engines operating at part-throttle, both at sea level static and at altitude flight conditions.
The predictions are based on co atant' component efficiencies and a linear relation
between corrected air mass flow and corrected L. P. compressor speed. Further
details are given in Section 4.0.

As part of another investigation (Ref. 6) a two-spool turbojet engine was
installed in the Laboratory's No. 4 Test Cell during the summer of 1970 (Fig. 1). This
provided an opportunity to compare the performance predictions of the Off-Design-Point
(0. D. P.) progrdin (Ref. 1) with experimental data. In addition to the comparison of
measured and predicted part-throttle performance, the current investigation compares
the observed and calculated effects of substantial bleed extraction from the H. P. com-
pressordeliveryplenum, of variations in propelling nozzle area, and of combinations
of these two perturbations to the basic engine cycle.

2.0 EXPERIMENTAL ARRANGEMENT

2.1 Engine and Installation

The experimental data for this verification were measured on a J-75/P-3
two-spool turbojet. This early version of the J-75 engine series comprised a ten-stage
L. P. compressor driven by a two-stage turbine, and a seven-stage H. P. compressor
driven by a single-stage turbine. Twin anti-.surge bleeds were fitted between the com-
pressor spools to vent approximately 6% of the L. P. compressor mass flow at L. P.
spool speeds below about 78%, (Fig. 2). The main combustor was of the can-annular
type. The engine was fitted with an afterburner and a two-position propelling nozzle
(Fig. 3), however the afterburner was not used during this test program.

The engine was installed in No. 4 Test Cell during the summer of 1970, as
Illustrated in Figure 1.

2.2 Provisions for Bleed Extraction

The term "Main Bleed" as used in this report refers to the extraction of
H. P. compressor delivery air for purposes noL directly related to Lhe operation of the
J-75 engine. This bleed was in addition to the anti-surge bleeds (described in Section 2.1)
that were necessary for the proper functioning of the engine.

Main bleed air was extracted from thw diffuser between the H.P. compressor
delivery annulus and the combustor inlet plenum. Four separate ports were fitted as
standard equipment on the J-75 engine. Two 3-inch diameter offtakes were provided

S. .. .'I ~ J•II + .,. -. , .-...- .
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for cabin pressurization and air conditioning. Two additional l-Inch diameter ports
were provided to supply anti-icing air for protecting the intake components of the
engine. Only one of tbese latter two ports would normally be used, the other being
provided for alteniative accessory locations. To achieve the main bleed flow ratesrequired for the companion investigation, all four ports were connected to a header

plenum as bhown in Figures 2 and 4. Part way through the program a fifth port, iden-
tioal with the two cabin bleed offtakes, was added in an attempt to increase the main
bleed flow rate further.

Main bleed air was discharged laterally through the two branches of the
T-nozzle shown in Figures 3 and 4. This nozzle configuration was chosen to eliminate .
axial thrust generated by the main bleed efflux.' Bleed flow rate was governed by the
size of the two discharge orifices in the T-nozzle.

2.3 Instrumentation I
Table I shows the instrumentation fitted to the engine for this test program.

Station coding is definea in Sketch A. Figure 2 illustrates the anti-surge bleed extension
pipe (port side) with the total pressure rake fitted. Figure 4 indicates the location of
the main bleed flow measuring orifice and other bleed flow instrumentation points.

A C ML OMH . C0MTBH .TU .P T N

I

NI kj 55 T R H. E~T1

B TaEON K. S IToN L RAN L

A4________________

MAIN BLEED EXTRACTION
II

ANTI-SURGE
BL EED

SKETCH A: THERMODYNAMIC CYCLE SHOWING BLEED EXTRACTION POINTS
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2.4 Testing Technique

A Calibration Run was made from idle to Military power in steps of approxi-
mately 5% L. P. spool speed. Subsequent tests were then performed with successively
increased bleed nozzle discharge orifices.

In all cases the li'kiting indicated turbine outlet temperature of 595°C was
observed. Despite low ambient temperatures, this limit restricted the maximum
operating speed whenever main bleed flow rates exceeded about 6% of the engine intake
flow rate.

Later in the program, the engfi.e propelling nozzle area was increased by
adjusting the "closed position" stops'(Fig. 3). This decreased the observed turbine
..outlet temperature.. and. thus permitted operation to higher speeds and higher. bleed
flow rates.

A sample "Raw Data" log sheet is incorporated in Appendix A.

3.0 DATA REDUCTION PROCEDURE

The data reduction routine utilized the rigorous thermodynamic techniques
"outlined in Reference 2, as well as temperature and fuel-air-ratio dependent thermo-
dynamic properties for the working fluid as outlined in Reference 5, to describe the
processes within the Various engine components. These techniques were used directly
in evaluating parameters for which all required variables were measured, and indirectly,
by trial and error, to establish values for variables that were not measured, All
experimental data were corrected to standard-day inlet conditions of 15°C and 29.92" Hg.

The program was coded in Fortran IV for the NRC IBM System 360 TSS.
"Sample raw data and output sheets are included heyrein as Appendix A. Raw input data
were tabulated together with the computed cycle parameters on a single output sheet
for each test point. The output format was arranged in a style similar to that of the
cycle analysis programs of References 1 and 2.

3.1 Intake Air Mass Flow Rate

Engine inlet air flow rate was calculated from total temperature and static
pressure measurements taken near the oxit from the entry bellmouth. Total pressure
was determined from the local barometric pressure and the measured test cell
depression. Inviscid one-dimensional flow assumptions were used initially. Later, a
correlation was introduced to account for two-dimensional flow, based on an analysis
of the flow in the bellmouth performed by Davis at Carleton University (Ref. 4).

3.2 Compressor Parameters

The L. P. and H. P. compressor pressure ratios and Isentropic efficiencies
were calculated directly from total pressure and total temperature measurements
taken at inlet and exit from these components.

Anti-surge bleed flow rate was computed from total temperature and total
pressure measurements made at the exit planes of the extension tubes fitted to the
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bleed ports (see Fig. 2). Port and starboard flow rates were calculated separately and
the sum was subtracted from the intake mass flow rate to give the H. P. compressor
flow rate.

Work requirements for both compressor spools were determined from the
appropriate temperature rise and mass flow rate data.

3.3 Main Bleed Flow Parameters

The main bleed flow rate was measured by a British Standard sharp-edged
orifice situated between the prerequisite lengths of straight duct in the bleed discharge
pipe (see Fig. 4). Total temperature and pressure were measured upstream of this
orifice plate. A theoretical maximum available bleed horsepower was computed by
assuming isentropic expansion from the bleed orifice inlet conditions to ambient total
pressure. These data are grouped separately on the output sheet (see Appendix A).

3.4 Combustor and Turbine Inlet Conditions (A)

Combustor efflux conditions were predicted from H. P., compressor outlet
measurements using the measured fuel flow rate (with an Effective Calorific Value in
accordance with Ref. 5) and an assumed total pressure loss of 5%.

3. 5 Turbine Parameters and Turbine Inlet Conditions (B)

Total temperature and total pressure were measured at the outlet of the L. P.
turbine. The work requirements for the two compressor spools were used in conjunc-
tion with the turbine mass flow rate (adjusted from the H. P. compressor flow rate to
account for main bleed extraction and fuel addition) to give a second estimate of the
inlet temperature to the H. P. turbine. This value was printed below the value obtained
from the combustor calculations of Section 3.4, and agreement to within about 3% was
obtained in most cases.

The H. P. turbine inlet pressure was determined from the measured L. P.
turbine outlet pressure by adjusting the assumed turbine efficiencies to give close
agreement with the v•alue derived from the nombustor calculations of Section 3.4 (i. e.
95% of the H.P. compressor delivery pressure). No means were incorporated for
changing turbine efficiencies in relation to engine speed and a constant value of 85%
isentropic efficiency was found to give agreement to within about 5% over -the useful
operating range of the engine.

3.6 Propelling Nozzle Parameters and Overall Engine Performance

Calculated thrust was derived from measured values of L. P, turbine outlet
temperature, nozzle mass flow rate, and (hot) final nozzle area, together with a thrust-
multiplier type of nozzle 'efficiency' that accounted for real-flow deviations from the
theoretical isentropic expansion process. An 'efficiency' value of 96% gave good
agreement between calculated and measured thrust at all significant engine operating
speeds. Th3 nozzle-inlet total pressure determined during the thrust calculations was
compared with the measured L, P. turbine outlet pressure to estimate the loss of total
pressure in the afterburner tailpipe.
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Specific thrust and specific fuel consumption completed the engine cycle
printotit, as shown in Appendix A.

4.0 THE OFF-DESIGN-POINT PERFORMANCE PREDICTIQN PROGRAM

The off-design-point (O, D. P. ) cycle analysis program is one of the series
of gas turbine cycle calculation routines generated at'the Engine Laboratory. It j
predicts cycle parameters and engine performance for a range of decreasing engine
speeds, both at sea level static and at altitude flight conditions. It is described fully
in Reference 1 and hence only a brief outline will be presented herein.

The fundamental thermodynamic routines and the component subriUtines are
the same as used in the design point (D. P. ) program of Reference 2. The O.D.P.
program first calculates the 100% speed, sea level static case for the engine cycle
specified by the input data (see Appendix B). The routine then resets '.he intake'
parameters to the altitude flight conditions specified in the input data and generates
the 100% speed, altitude case. During this and all part-throttle cases, the turbine
and propelling nozzle areas are fixed at the values established during the 100% speed,
sea level static case. The program iterates throughout the entire cycle calculation
until the areas are matched at each part-throttle speed. To aid convergence, the
differential analysis technique of Reference 3 is used to predict the changes -required
in the major engine variables for each iteration.

The major assumptions incorporated within the O.D. P. program are:

(a) Component (compressor and turbine) efficiencies remain constant at the
design point values

(b) Combustor efficiency, pressure losses, and nozzle thrust "efficiency"
remain constant at the design point values

and (c) Corrected engine intake mass flow rate varies in direct proportion to the
corrected L. P. compressor rotational speed.

Appendix B contains samplc O.D. P. input and output sheets to illustrate
their respective formats.

5.0 CORRELATION OF EXTERIMENTAL AND COMPUTED PERFORMANCE OF
THE BASIC ENGINE

The term "Basic Engine" is used throughout this report to denote the
geometric configuration of the Y-75/P-3 engine as originally tested and matched to the
computed cycle. Perturbations to the Basic Engine cycle were:

(a) Extraction of (massive) bleed air from the H. P. compressor outlet
diffuser casing

I (b) Increase of propelling nozzle area

and (c) Combinations of (a) and (b).

I



I7

iThe thermodynamic cycle is depJ.cted schematically in Sketch A, Section 2.3,
including both anti-surge and main bleed extractions. It will be recalled that the anti-
surge bleed from the L. P. compressor is required for normal engine operation at
speeds below about 78%, irrespective of any additional main bleed air extraction from
the H.P. compressor outlet diffuser.

5.1 Technique of Describing Anti-Surge Bleeds

'The current version of the 0. D. P. program has the capability of analysing
an engine cycle in which different quantities of overboard bleed are extracted from the
outlete of bobh compressor spools, at sea level static and at altitude flight conditions.
The turbine and propelling nozzle areas are established for sea level static intake
conditions with the bleed extraction quantities specified for the sea level static case.
These areas remain fixed for all throttle settings at the altitude intake conditions and
the altitude bleed quantity specified. This program feature provided simulation of the
anti-surge bleeds on the J-75 engine, by processing two dual calculations (see below)
both with the same (sea level static, no anti-surge bleed) base cycle. A negligible
altitude of 15 feet was specified for the second part of each cycle in order to permit the
incorporation of the interspool bleed at the lower speeds.

CYCLE I (a) Sea Level No A/S Bleeds 100% Speed

(b) 15 ft Altitude No A/S Bleeds 100% Speed to 80% Speed

CYCLE II (a) Sea Level No A/S Bleeds 100% Speed
(b) 15 ft Altitude 6.1% A/S Bleed 100% Speed to 40% Speed

t (100% to 80% Discarded)

Cycles I(a) and 11(a) are of course identical. Cycle I(b) describes engine
performance at part-throttle speeds down to 80% where the anti-surge bleed ports are• closed. Cycle II(b) describes engine performance at part-throttle speeds of 75% and

* •below where approximately 6. 1% anti-surge bleed is extracted from the L. P. com-
pressor delivery plenum.

4 This technique was used to describe the extraction of anti-surge bleed air
from the L.P. compressor in all J-75 cycles, both with and without main bleed
extraction from the H. P. compressor.

5.2 Matching Computed Performance to Measured Data

Figures 6to 17 show the comparison betweenthe measured engine parameters
and those predicted by the 0. D. P. program for part-throttle settings down to 40% L. P.
spool speed. The inputs for the Design Point cycle were selected to give reasonable
agreement with the experimental data at the higher L. P. spool speeds (80% to 100% N1).
The thermodynamic parameters of the most representative Design Point cycle are
listed, together with the comparable experimental values, in the following Table.

F
I 11111 T ill'i ,I-!: ! H !!•:! '" i' ,•,.,I
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PARAMETER EXPERIMENTAL D. P. CYCLE

L.P. Compressor PR 3.80 3.80
r ,j,,t 0.85 ave 0.85

PL (0.00) 0.00

Anti-Surge Bleed Flow 6.1% ave @:5 78% N1  .10% @ < 78% N1

H.P. Compressor PR 3.09 3.09

0.90 ave 0.91

PL (0.00) 0.00

Combustor PL '(0.05) 0.05

n,, (0.98) 0.98

Turbine Inlet Temperature a 1187°K 1173"K
b 12010K

H.P. Turbine i lent (0.85) 0.85
, (1.00) 1.00

PL (0.00) 0.00

L.P. Turbine (0s,85) 0.85
7lm.ck (1.00) 1.00

PL (0.06) 0.06

Propelling Nozzle 1% (0.96) 0.96

Performance at 100% N1

Specific Thrust 62.41 lbf/lb,/sec 64.08 lbf/lb,/sec

Specific Fuel 0. 868 lbm/hr/lbf 0. 852 lbm/hr/lbf
Consumption

Experimental cycle values in parentheses were either inferred from measurements of
other parameters or assumed.

No account was taken of accessory drive power extraction from either spool or for
extraction and return of turbine disc cooling airflows.

It can be seen from Figures 6 to 17 that very close agreement was achieved
between most measured and computed part-throttle data down to the speed at which the
anti-surge bleed valves opened (about 78% N,). The step-change in nearly all parameters



at the onset of anti-surge bleed flow was also accurately predicted by the O.D.P.
program using the technique described in Section 5. 1. The considerable scatter of
compressor efficiencies, which were derived from measured engine data, is discussed
in Section 5.4.

5.3 Implications of the Assumed Linear Relation Between Mass Flow and Low
Pressure Spool Speed

Figure 'Y shows the measured variation of intake air mass flow rate with
.L. P, spool speed compared with the O.D. P. program approximation of linear propor- ..
tionality. One can see that, for this two-spool turbojet engine, the approximation
underestimated the air mass flow rate by up to about 3% in the 100% to 75% speed
range. Below 75% speed, the approximation coiitinuously overestimated the intake
flow rate, the discrepancy reaching a maximum of 7% at 40% L. P. spool speed.

The effect of this imperfect correlation on mass-flow-rate-dependent
parameters such as fuel flow rate and thrust can be noted on Figures 11 and 15a re-
spectively. Both parameters show increasing differences between experimental and
computed values as engine speed decreases, the latter values being greater in both
cases. However, the absolute magnitude of the error L. large, amounting to less
than 3% at useful engine speeds of 75% and above.

Greater discrepancies in mass-flow-dependent performance parameters may
be expected in high bypass ratio turbofan engine cycles where a significant proportion
of the total engine performance is due to the unheated bypass stream.

5.4 Implications of Assumed Constant Compressor Efficiency

The experimentally determined values of L. P., H. P., and overall compressor
efficiencies exhibited considerable scatter, as shown on Figures 8c, 9c, and 10c. An
average isentropic efficiency, biased toward the higher operating speeds, was selected
for the D. P. cycle. This value was converted to a polytropic efficiency for input into
the O.D.P. program and the corresponding isentropic efficiencies were computed at
each throttle setting (pressure ratio) for this fixed D. P. polytropic efficiency.

A strong decline in the measured efficiency of the L. P. compressor spool
from 80% to 100% engine speed (Fig. 8c) was evident, and yet the part-throttle
predictions of L. P. pressure ratio (Fig. 8a) and L. P. temperature rise (Fig. 8b)
based on the constant polytropic efficiency are acceptably close to the measured values,
even at engine speeds as low as 40%.

The measured values of the H. P. compressor efficiency do not show as
strong a trend with engine speed (Fig. 9c) and hence the constant polytropic efficiency
prediction more closely approximates the scattered experimental data. Moreover,
excellent agreement between the measured and predicted values of pressure ratio and
temperature rise across the H. P. compressor spool can be noted from Figures 9a and
9b at engine speeds down to about 70%. Below this speed, however, the 11. P. compres-
sor pressure ratio predicted by the O.D.P. program remains substantially constant



whereas the experimental values continue to fall significantly. This suggests that, in
fact,' the H. P. compressor efficiency drops more than the predicted data indicate in
this low speed region. It will be noted also from Figure 6 that the O.D. P. program pre-
dicts considerably higher H. P. spool speeds than were measured at L. P. spool speeds
of•70% Rnd below.

The predicted overall compressor characteristics shown on Figures 10a, lOb,
and 1Oc agree closely with the' experimental values. Unlike the individual compressor
characteristics, these overall experimental data are independent of measurements

made at the interspool station (,&) and the scatter is noted to be considerably less,
even for the efficiency values shown on Figure bOc.

No experimental data were obtained to permit calculation of individual or
overall turbine efficiencies. As detailed in Section 3, the assumed values of turbine
efficiencies used in the experimental data reduction program were adjusted to give a
reasonable match between turbine inlet pressures determined from upstream and
downstream measuring stations. The same turbine efficiency values were used in the
O.D.P. program simulation of the engine cycle.

6.0 COMPUTED AND MEASURED EFFECTS OF BLEED EXTRACTION FROM THE
BASIC ENGINE

The major engine parameters affected by the extraction of main bleed air
from the H. P. compressor delivery plenum are:

1. L. P. and H.P. compressor operating lines
2. Turbine inlet and turbine outlet temperatures
3. Thrust
4. Specific fuel consumption.

In general terms, main bleed extraction will: increase the surge margin of
both L.P. and H.P. compressors; increase both turbine inlet and turbine outlet
temperatures (and the turbine temperature drop); decrease specific thrust based on
the inlet air mass flow rate; and increase the specific fuel consumption.

Two experimental runs were made with main bleed air extraction from the
H. P. compressor delivery plenum of the Basic Engine. Total geometric areas for
the two T-nozzle orifices (recall Section 2.2) were 6.28 sq. in. and 14.14 sq. in.
yielding average bleed mass flow rates of 3.6% and 5.9% of engine intake mass flow
respectively (see Fig. 18). Data from these two tests were reduced by the Data
Reduction Routine described in Section 3.0, and were compared with experimental data
from the calibration runs of the Basic Engine to obtain the measured effects of main
bleed extraction cn various engine parameters.

Predicted effects of main bleed extraction were obtained by comparing the
O.D.P. program ouputs for the basic engine and for the engine with various fixed
percentages of main bleed air. The same technique of manipulating the O.D.P.
program was used to describe main bleed extraction from the H. P. compressor as
was used to describe the anti-surge bleed extraction from the L. P. compressor
(Section 5.1). Four sets of dual cycles were processed to yield values for 3.7%, 5.0%,
6.0%, and 10. 0% main bleed flow rate.
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A/S MAIN L.P. SPOOL
BLEED BLEED SPEED RANGE

CYCLE A 1) Sea Level NIL NIL 100% i
2) 15' NIL MB% 100% to 80%

CYCLE B 1) Sea Level NIL NIL 100%

2) 15' 6.1% MB% 100% to 40%
(100% to 80% discarded)

where MB% = 3.7%, 5.0%, 6.0%, 10.0%

As explained in Section 5. 1, this technique maintained the basic engine values
for turbine and propllling nozzle areas during the part-throttle cycles with dual bleeds.

Comparisons of the predicted and measured effects of main bleed extraction
were made for the engine parameters listed at the beginning of this Section. Both
dimensional and non-dimensional data were compared. The latter are presented in
terms of 'Influence Coefficients' (Wes), which were defined as follows:

A mB/.% -AJBASIC ENGINE I

I0BLEED ED
L ~ ,BASIC ENGINEL_ "• •NO BLEED

M B %MAIN BLEED

where: J represents any engine parameter

and MB % is the percentage of main bleed

The influence coefficient describes the percentage change in the engine

parameter A for one percent main bleed extracted from the H. P. compressor
delivery plenum. At very small bleed flow rates these influence coefficients would be
constant regardless of the percentage bleed. However, calculations for bleed flow
rates of interest showed this not to be the case for some parameters, particularly
turbine inlet and turbine outlet temperatures and specific fuel consumption (Fig. 19).
Hence it was necessary to compare predicted and experimental values using the
influence coefficients for the correct (experimentally determined) percentage main
bleed. To facilitate this approach, influence coefficients for the relevant engine
parameters were determined from the O.D.P. outputs for 3.7%, 5.0%, 6,0%, and 10.0%
main bleed flow rates using the general form of equation (1) above for various engine J
speeds. These values were plotted as shown in Figure 20 (using the specific fuel con-
sumption influence coefficients as an example). Individual values were then read off for
the speed and main bleed flow rate conditions measured during the experimental tests
(e.g. Fig. 18).

:I
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The calculation procedure was tabulated as Indicated In the following example (for the specific
fuel consumption response).

J-75t COMPARISON OF MEASURED AND PREDICTED RESPONSE
TO MAIN BLEED EXTRACTION

(Specific Fuel Consumption)

o% PREDICTED PREDICTED MEASURED MEASURED
/N, BLEED - MEASURE

BASIC ENMOSR,(X.P.) .,., A AA LAAEXP. BLEED ~ I

40 3.02 2.900 1.4880 1.3867 +0. 1313 -0.1013 -2.254

50 8.10 2.760 1.0585 N/R 0.0906 - -

0L 60 3.25 2.592 0.9020 0.9663 0.0760 0.0643 2.193

70 3.47 2.375 0.8375 N/R 0.0690 -

75 3.58 2.265 0.8235 0.8923 0.0668 0.0688 2.334

so 3.64 1.980 0.7740 0.8356 0,0558 0.0616 2.186

.85 3.70 1.840 0.7880 0.8483 0.0536 0.0603 2,068

0 90 3.76 1.740 0.8090 0.8689 0.0529 0.0599 1.969
U - - 063.2020

95 3.80 1.655 0.8350 Rdg, Error 0.0525 - -

100 3.83 1.590 0.8660 0.9294 0.0527 0.0634 1.911

RUN 2 SCF

COLUMN / Experimental percentage bleed read from Figure 18 for the appropriate %NI and

Run No.

COLUMN A Predicted influence coefficient read from Figure 20 for the speed and percentage bleed

of Columns & and ,

COLUMN A Specific fuel consumption of the basic engine without main bleed at the appropriate
speed read from calibration plot (Fig. 16).

COLUMN A Specific fuel consumption of the engine with percentage bleed per Column & read
from the Data Reduction Routine output sheets for the appropriate Run No, and speed,

COLUMN , Predicted change ,n spedific fuel consumption obtained from the product of Columnas8

a,.nd&.

COLUMN & Measured change in specific fuel consumption obtained from the difference of

Column A - Column A.
ColumnA

COLUMN &j Measured influence coefficient obtained from C m

Column A v Column A
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Dimensional values from Columns L• and A , and influence coefficients

from Columns & and & were plotted against L. P. spool speed from Column & as
shown in Figure 28. Figures 21 to 28 illustrate the comparison between measured and
predicted response of other salient engine parameters in the same format.

Both dimensional changes and influence coefficients related to the L. P.
compressor pressure ratio show good agreement with predicted values at all useful
engine speeds (see Fig. 21). Although analytical and experimental H. P. compressor
pressure ratio responses rhow a common trend (see FIg. 22) the absolute values are
in reasonable agreement only at higher engine speeds. Under throttled-back conditions,
predictions and experimental data deviate considerably, and actually become of opposite
sign at the lower engine speeds.

Fuel flow rate, turbine inlet temperature, and turbine outlet temperature
all increased by considerably greater amounts than were predicted by the O.D.P.
program (see Figs. 23, 24, and 25). Nevertheless, the experimental influence coeffi-
cients confirm the linearity of these responses withasmall changes in main bleed rate.
The similarity in discrepancy between predicted and experimental results for the fuel
flow rate and the turbine temperatures suggests the effect is real, as compatibility of
errors in two separate measuring systems ti unlikely. From an operational viewpoint,
the results indicate that the increase in limiting (turbine inlet) temperature caused by
main bleed air extraction is likely to be more severe than the 0. D. P. program predicts,
and hence some conservatism is justified when predicting the maximum permissible
main bleed extraction rate.

The higher-than-predicted fuel flow and turbine temperature responses are
reflected in lower-than-predicted (negative) thrust and specific thrust responses (see
Figs. 26 and 27); i.e., the higher temperatures prevented the thrust from decreasing
as much as the O.D. P. program predicted. These two effects counteract one another
to some extent and yield closer agreement between the experimental and predicted
values of the specific fuel consumption response as illustrated in Figure 28.

No definitive ex-planation can be offered for those discrepancies between
analytical and experimental response; however, the approximations of constant com-
ponent efficiencies and constant pressure losses Incorporated in the 0. D. P. program
were undoubtedly contributing faetors.

7.0 COMPUTED AND MEASURED EFFECTS OF INCREASED PROPELLING NOZZLE
AREA WITHOUT MAIN BLEED EXTRACTION

As pointed out In Section 6.0, one of the effects of compressor main bleed
extraction was an increase in turbine inlet temperature - a major limiting operating
parameter. Reduction of turbine back pressure, achieved by increasing the area of
the propelling nozzle, reduces this temperature. In order to establish the effects of a
change in nozzle area on the major cycle parameters, one test run was conducted with
this area increased by 7.52%, without any main bleed extraction.

The analytical prediction of these effects was obtained from the O.D. P.
program, which computes the propelling nozzle area from the continuity relation, by
inputting a multiplier to modify the area generated du ringthe calculation of the standard

_4
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sea level design speed cycle. By iterative calculation, the cycle was forced to adjust
to this enlarged area for all subsequent full speed and part-throttle conditions. Analyt-
ically derived influence coefficients for area increases of 5% and 10% are plotted on
Figure 29 to show the slight nonlinearity with nozzle area increase. The measured and
predicted changes in engine parameters and the corresponding influence coefficients
(as defined in Section 6.0) are plotted on Figures 30 to 37.

Very good agreement was found between measured and predicted values of

L. P. compressor pressure ratio (Fig. 30) and specific fuel consumption (Fig. 37) over
the useful engine operating range. With all other parameters, the O.D. P. program
greatly overpredicted changes caused by the increased propelling nozzle area, especially
above 77% L. P. compressor speed where the anti-surge bleeds are closed. Surprisingly,
the computer program produced step changes opposite to those measured on the engine
at the point where the anti-surge bleed valvee closed. Because of this peculiarity,
botter agreement between experimental and analytical results can be observed at the
lower end of the engine speed range. It is interesting to note that in all cases where
discrepancies exist between measured and computed values, the O.D. P. program
predicted changes greater by a factor of 1.5 to 2.0. Proportionate overestimation of
fuel flow rate change (Fig. 32) and thrust change (Fig. 35) again yielded close agree-
ment between the measured and predicted specific fuel consumption responses (Fig. 37),
a case of "two wrongs making a right".

8.0 COMPUTED AND MEASURED EFFECTS OF INCREASED PROPELLING NOZZLE
AREA WITH BLEED EXTRACTION

To establish the effects of combined bleed extraction and nozzle area change,
one test was run in which the maximum amount of H. P. bleed air was extracted, with
the propelling nozzle area increased by 7.52% relative to the Basic Engine. The bleed
flow rate varied from 8.4% to 9.8%, generally increasing with engine speed as shown
in Figure 18. This increased flow rate was achieved by further increasing the T-nozzle
area to 20.00 sq. in.

Opening the final nozzle kept the turbine inlet temperature increase within
500C at the higher engine speeds. Changes in the major cycle parameters as functions
of L. P. compressor speed have been plotted on Figures 38 to 45. With two interacting
disturbances to the Basic Engine cycle, viz., main bleed extraction and change in
propelling nozzle area, unique influence coefficients were unobtainable as can readily
be noted from the definition of these coefficients in Section 6.0. In addition to reduced
experimental data and the O.D. P. program predictions, a second prediction has been
displayed in the above Figures. This estimated change comprised the algebraic sum of
the single-variable influence coefficients for main bleed extraction and propelling
nozzle area change, viz.

AAC~AxBV AANOZ
where CJL asud V/A are influence coefficients relating to uompressor main bleed andII II,'

propelling nozzle area increase respectively. A represents any engine parameter

and AA its change.
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Considering the rather unsuccessful attempts at predicting cycle parameter
responses to main bleed extraction and nozzle area change individually, the relatively
poor agreement betwepn measured and predicted parameter changes in the case of
combined disturbances to the Basic Engine cycle was anticipated. As one would expect,
the two analytical curves (O.D.P. program and summation of individual influence
coefficients) are quite similar in all plots. Although the relative agreement, or lack of
it, between experimental results and analytical predictions varies for different
parameters, none is good enough to justify quantitative use of the O.D.P. programrredictions.

The best agreement occurred with the L. P. compressor pressure ratio (at
L. P. spool speeds above 77%) and the specific fuel consumption, (see Figs. 38 and 45).
The latter agreement again resulted from fortuitous combinations of individual discre-
pancies in fuel flow rate and thrust changes (see also Sections 6.0 and 7. 0). The
measured changes in H. P. compressor pressure ratio, thrust, and specific thrust were
less than the predicted changes by a factor of approximately 2/3, as can be seen on
Figures 39, 43, and 44. Responses of the other parameters, fuel flow rate and turbine
temperatures, bore little resemblance to the predicted values. As can be noted from
Figures 40, 41, and, 42, all three of these, variables increased significantly under the
combined effects of bleed extraction and increased nozzle area, whereas the O.D. P.
program, forecast slight decreases at high engine speeds and only moderate increases
at low engine speeds. This inability of the O.D. P. program to forecast accurately
changes in turbine temperatures detracts seriously from its usefulness as a tool for
assessing permissible maximum bleed extraction rates.

9. 0 CONCLUSIONS -

Comparisons between actual test results and values predicted by the current
version of the O.D. P. program led to the following conclusions:

i) The Off-Design-Point program provided very good predictions of major
cycle parameter changes of the Basic Engine under part-throttle operating
conditions.

if) The approximation of linear proportionality between uorrected L. P.
compressor speed and corrected air mass flow rate (used in the O.D. P.)
underestimated the flow rate by as much as 3% in the 75% to 100% engine
speed range. Below 75% engine speed, the approximation continuously
overestimated the air mass flow rate. 4

iii) In general, the computer program with its simplifying approximations was
capable of predicting only within a factor of two, responses of major cycle
parameters to H. P. compressor bleed extraction, changes in propelling
nozzle area, and combinations of both perturbations.

iv) In particular, the current version of the 0. D. P. calculation routine
underestimated the turbine inlet (and turbine outle*% temperature responses
by a factor of two. This imprecision seriously Aotracts from its useful-
ness as a tool for assessing permissible maximum bleed extraction rates,
and will be the subject of further analysis.

~ ~ -.. *.~ - -- -
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APPENDIX A
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SAMPLE RAW DATA AND OUTPUT SHEETS
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APPENDIX B

SAMPLE INPUT AND OUTPUT S3HEETS FROM THE

OFF-DESIGN-POINT (0. D. P.) PERFORMANCE PREDICTION PROGRAM
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